Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autophagy and innate immunity: Insights from invertebrate model organisms.

Identifieur interne : 000655 ( Main/Exploration ); précédent : 000654; suivant : 000656

Autophagy and innate immunity: Insights from invertebrate model organisms.

Auteurs : Cheng-Ju Kuo [États-Unis, Taïwan] ; Malene Hansen [États-Unis] ; Emily Troemel [États-Unis]

Source :

RBID : pubmed:29130360

Descripteurs français

English descriptors

Abstract

Macroautophagy/autophagy is a fundamental intracellular degradation process with multiple roles in immunity, including direct elimination of intracellular microorganisms via 'xenophagy.' In this review, we summarize studies from the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans that highlight the roles of autophagy in innate immune responses to viral, bacterial, and fungal pathogens. Research from these genetically tractable invertebrates has uncovered several conserved immunological paradigms, such as direct targeting of intracellular pathogens by xenophagy and regulation of autophagy by pattern recognition receptors in D. melanogaster. Although C. elegans has no known pattern recognition receptors, this organism has been particularly useful in understanding many aspects of innate immunity. Indeed, work in C. elegans was the first to show xenophagic targeting of microsporidia, a fungal pathogen that infects all animals, and to identify TFEB/HLH-30, a helix-loop-helix transcription factor, as an evolutionarily conserved regulator of autophagy gene expression and host tolerance. Studies in C. elegans have also highlighted the more recently appreciated relationship between autophagy and tolerance to extracellular pathogens. Studies of simple, short-lived invertebrates such as flies and worms will continue to provide valuable insights into the molecular mechanisms by which autophagy and immunity pathways intersect and their contribution to organismal survival. Abbreviations Atg autophagy related BECN1 Beclin 1 CALCOCO2 calcium binding and coiled-coil domain 2 Cry5B crystal toxin 5B Daf abnormal dauer formation DKF-1 D kinase family-1 EPG-7 Ectopic P Granules-7 FuDR fluorodeoxyuridine GFP green fluorescent protein HLH-30 Helix Loop Helix-30 Imd immune deficiency ins-18 INSulin related-18; LET-363, LEThal-363 lgg-1 LC3, GABARAP and GATE-16 family-1 MAPK mitogen-activated protein kinase MATH the meprin and TRAF homology MTOR mechanistic target of rapamycin NBR1 neighbor of BRCA1 gene 1 NFKB nuclear factor of kappa light polypeptide gene enhancer in B cells NOD nucleotide-binding oligomerization domain containing OPTN optineurin PAMPs pathogen-associated molecular patterns Park2 Parkinson disease (autosomal recessive, juvenile) 2, parkin pdr-1 Parkinson disease related PFTs pore-forming toxins PGRP peptidoglycan-recognition proteins PIK3C3 phosphatidylinositol 3- kinase catalytic subunit type 3 pink-1 PINK (PTEN-I induced kinase) homolog PRKD protein kinase D; PLC, phospholipase C PRKN parkin RBR E3 ubiquitin protein ligase PRRs pattern-recognition receptors PtdIns3P phosphatidylinositol-3-phosphate rab-5 RAB family-5 RB1CC1 RB1-inducible coiled-coil 1 RNAi RNA interference sqst SeQueSTosome related SQSTM1 sequestosome 1 TBK1 TANK-binding kinase 1 TFEB transcription factor EB TGFB/TGF-β transforming growth factor beta TLRs toll-like receptors unc-51 UNCoordinated-51 VPS vacuolar protein sorting; VSV, vesicular stomatitis virus VSV-G VSV surface glycoprotein G Wipi2 WD repeat domain, phosphoinositide interacting 2.

DOI: 10.1080/15548627.2017.1389824
PubMed: 29130360
PubMed Central: PMC5902216


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autophagy and innate immunity: Insights from invertebrate model organisms.</title>
<author>
<name sortKey="Kuo, Cheng Ju" sort="Kuo, Cheng Ju" uniqKey="Kuo C" first="Cheng-Ju" last="Kuo">Cheng-Ju Kuo</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>b Institute of Basic Medical Sciences , College of Medicine , National Cheng Kung University , Tainan , Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>b Institute of Basic Medical Sciences , College of Medicine , National Cheng Kung University , Tainan </wicri:regionArea>
<wicri:noRegion>Tainan </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hansen, Malene" sort="Hansen, Malene" uniqKey="Hansen M" first="Malene" last="Hansen">Malene Hansen</name>
<affiliation wicri:level="2">
<nlm:affiliation>c Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging and Regeneration , La Jolla , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>c Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging and Regeneration , La Jolla , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Troemel, Emily" sort="Troemel, Emily" uniqKey="Troemel E" first="Emily" last="Troemel">Emily Troemel</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29130360</idno>
<idno type="pmid">29130360</idno>
<idno type="doi">10.1080/15548627.2017.1389824</idno>
<idno type="pmc">PMC5902216</idno>
<idno type="wicri:Area/Main/Corpus">000682</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000682</idno>
<idno type="wicri:Area/Main/Curation">000682</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000682</idno>
<idno type="wicri:Area/Main/Exploration">000682</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Autophagy and innate immunity: Insights from invertebrate model organisms.</title>
<author>
<name sortKey="Kuo, Cheng Ju" sort="Kuo, Cheng Ju" uniqKey="Kuo C" first="Cheng-Ju" last="Kuo">Cheng-Ju Kuo</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>b Institute of Basic Medical Sciences , College of Medicine , National Cheng Kung University , Tainan , Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>b Institute of Basic Medical Sciences , College of Medicine , National Cheng Kung University , Tainan </wicri:regionArea>
<wicri:noRegion>Tainan </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hansen, Malene" sort="Hansen, Malene" uniqKey="Hansen M" first="Malene" last="Hansen">Malene Hansen</name>
<affiliation wicri:level="2">
<nlm:affiliation>c Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging and Regeneration , La Jolla , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>c Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging and Regeneration , La Jolla , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Troemel, Emily" sort="Troemel, Emily" uniqKey="Troemel E" first="Emily" last="Troemel">Emily Troemel</name>
<affiliation wicri:level="2">
<nlm:affiliation>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA , USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA </wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Autophagy</title>
<idno type="eISSN">1554-8635</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Autophagy (immunology)</term>
<term>Bacterial Infections (immunology)</term>
<term>Bacterial Infections (microbiology)</term>
<term>Caenorhabditis elegans (MeSH)</term>
<term>Drosophila melanogaster (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Immunity, Innate (MeSH)</term>
<term>Models, Animal (MeSH)</term>
<term>Mycoses (immunology)</term>
<term>Mycoses (microbiology)</term>
<term>Receptors, Pattern Recognition (physiology)</term>
<term>Signal Transduction (immunology)</term>
<term>Virus Diseases (immunology)</term>
<term>Virus Diseases (virology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Autophagie (immunologie)</term>
<term>Caenorhabditis elegans (MeSH)</term>
<term>Drosophila melanogaster (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Immunité innée (MeSH)</term>
<term>Infections bactériennes (immunologie)</term>
<term>Infections bactériennes (microbiologie)</term>
<term>Maladies virales (immunologie)</term>
<term>Maladies virales (virologie)</term>
<term>Modèles animaux (MeSH)</term>
<term>Mycoses (immunologie)</term>
<term>Mycoses (microbiologie)</term>
<term>Récepteurs de reconnaissance de motifs moléculaires (physiologie)</term>
<term>Transduction du signal (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Receptors, Pattern Recognition</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Autophagie</term>
<term>Infections bactériennes</term>
<term>Maladies virales</term>
<term>Mycoses</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Autophagy</term>
<term>Bacterial Infections</term>
<term>Mycoses</term>
<term>Signal Transduction</term>
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Infections bactériennes</term>
<term>Mycoses</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Bacterial Infections</term>
<term>Mycoses</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Récepteurs de reconnaissance de motifs moléculaires</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Maladies virales</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Virus Diseases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Caenorhabditis elegans</term>
<term>Drosophila melanogaster</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Models, Animal</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Caenorhabditis elegans</term>
<term>Drosophila melanogaster</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Modèles animaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Macroautophagy/autophagy is a fundamental intracellular degradation process with multiple roles in immunity, including direct elimination of intracellular microorganisms via 'xenophagy.' In this review, we summarize studies from the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans that highlight the roles of autophagy in innate immune responses to viral, bacterial, and fungal pathogens. Research from these genetically tractable invertebrates has uncovered several conserved immunological paradigms, such as direct targeting of intracellular pathogens by xenophagy and regulation of autophagy by pattern recognition receptors in D. melanogaster. Although C. elegans has no known pattern recognition receptors, this organism has been particularly useful in understanding many aspects of innate immunity. Indeed, work in C. elegans was the first to show xenophagic targeting of microsporidia, a fungal pathogen that infects all animals, and to identify TFEB/HLH-30, a helix-loop-helix transcription factor, as an evolutionarily conserved regulator of autophagy gene expression and host tolerance. Studies in C. elegans have also highlighted the more recently appreciated relationship between autophagy and tolerance to extracellular pathogens. Studies of simple, short-lived invertebrates such as flies and worms will continue to provide valuable insights into the molecular mechanisms by which autophagy and immunity pathways intersect and their contribution to organismal survival. Abbreviations Atg autophagy related BECN1 Beclin 1 CALCOCO2 calcium binding and coiled-coil domain 2 Cry5B crystal toxin 5B Daf abnormal dauer formation DKF-1 D kinase family-1 EPG-7 Ectopic P Granules-7 FuDR fluorodeoxyuridine GFP green fluorescent protein HLH-30 Helix Loop Helix-30 Imd immune deficiency ins-18 INSulin related-18; LET-363, LEThal-363 lgg-1 LC3, GABARAP and GATE-16 family-1 MAPK mitogen-activated protein kinase MATH the meprin and TRAF homology MTOR mechanistic target of rapamycin NBR1 neighbor of BRCA1 gene 1 NFKB nuclear factor of kappa light polypeptide gene enhancer in B cells NOD nucleotide-binding oligomerization domain containing OPTN optineurin PAMPs pathogen-associated molecular patterns Park2 Parkinson disease (autosomal recessive, juvenile) 2, parkin pdr-1 Parkinson disease related PFTs pore-forming toxins PGRP peptidoglycan-recognition proteins PIK3C3 phosphatidylinositol 3- kinase catalytic subunit type 3 pink-1 PINK (PTEN-I induced kinase) homolog PRKD protein kinase D; PLC, phospholipase C PRKN parkin RBR E3 ubiquitin protein ligase PRRs pattern-recognition receptors PtdIns3P phosphatidylinositol-3-phosphate rab-5 RAB family-5 RB1CC1 RB1-inducible coiled-coil 1 RNAi RNA interference sqst SeQueSTosome related SQSTM1 sequestosome 1 TBK1 TANK-binding kinase 1 TFEB transcription factor EB TGFB/TGF-β transforming growth factor beta TLRs toll-like receptors unc-51 UNCoordinated-51 VPS vacuolar protein sorting; VSV, vesicular stomatitis virus VSV-G VSV surface glycoprotein G Wipi2 WD repeat domain, phosphoinositide interacting 2.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29130360</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1554-8635</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Autophagy</Title>
<ISOAbbreviation>Autophagy</ISOAbbreviation>
</Journal>
<ArticleTitle>Autophagy and innate immunity: Insights from invertebrate model organisms.</ArticleTitle>
<Pagination>
<MedlinePgn>233-242</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15548627.2017.1389824</ELocationID>
<Abstract>
<AbstractText>Macroautophagy/autophagy is a fundamental intracellular degradation process with multiple roles in immunity, including direct elimination of intracellular microorganisms via 'xenophagy.' In this review, we summarize studies from the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans that highlight the roles of autophagy in innate immune responses to viral, bacterial, and fungal pathogens. Research from these genetically tractable invertebrates has uncovered several conserved immunological paradigms, such as direct targeting of intracellular pathogens by xenophagy and regulation of autophagy by pattern recognition receptors in D. melanogaster. Although C. elegans has no known pattern recognition receptors, this organism has been particularly useful in understanding many aspects of innate immunity. Indeed, work in C. elegans was the first to show xenophagic targeting of microsporidia, a fungal pathogen that infects all animals, and to identify TFEB/HLH-30, a helix-loop-helix transcription factor, as an evolutionarily conserved regulator of autophagy gene expression and host tolerance. Studies in C. elegans have also highlighted the more recently appreciated relationship between autophagy and tolerance to extracellular pathogens. Studies of simple, short-lived invertebrates such as flies and worms will continue to provide valuable insights into the molecular mechanisms by which autophagy and immunity pathways intersect and their contribution to organismal survival. Abbreviations Atg autophagy related BECN1 Beclin 1 CALCOCO2 calcium binding and coiled-coil domain 2 Cry5B crystal toxin 5B Daf abnormal dauer formation DKF-1 D kinase family-1 EPG-7 Ectopic P Granules-7 FuDR fluorodeoxyuridine GFP green fluorescent protein HLH-30 Helix Loop Helix-30 Imd immune deficiency ins-18 INSulin related-18; LET-363, LEThal-363 lgg-1 LC3, GABARAP and GATE-16 family-1 MAPK mitogen-activated protein kinase MATH the meprin and TRAF homology MTOR mechanistic target of rapamycin NBR1 neighbor of BRCA1 gene 1 NFKB nuclear factor of kappa light polypeptide gene enhancer in B cells NOD nucleotide-binding oligomerization domain containing OPTN optineurin PAMPs pathogen-associated molecular patterns Park2 Parkinson disease (autosomal recessive, juvenile) 2, parkin pdr-1 Parkinson disease related PFTs pore-forming toxins PGRP peptidoglycan-recognition proteins PIK3C3 phosphatidylinositol 3- kinase catalytic subunit type 3 pink-1 PINK (PTEN-I induced kinase) homolog PRKD protein kinase D; PLC, phospholipase C PRKN parkin RBR E3 ubiquitin protein ligase PRRs pattern-recognition receptors PtdIns3P phosphatidylinositol-3-phosphate rab-5 RAB family-5 RB1CC1 RB1-inducible coiled-coil 1 RNAi RNA interference sqst SeQueSTosome related SQSTM1 sequestosome 1 TBK1 TANK-binding kinase 1 TFEB transcription factor EB TGFB/TGF-β transforming growth factor beta TLRs toll-like receptors unc-51 UNCoordinated-51 VPS vacuolar protein sorting; VSV, vesicular stomatitis virus VSV-G VSV surface glycoprotein G Wipi2 WD repeat domain, phosphoinositide interacting 2.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kuo</LastName>
<ForeName>Cheng-Ju</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA , USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>b Institute of Basic Medical Sciences , College of Medicine , National Cheng Kung University , Tainan , Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hansen</LastName>
<ForeName>Malene</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>c Sanford Burnham Prebys Medical Discovery Institute, Program of Development, Aging and Regeneration , La Jolla , CA , USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Troemel</LastName>
<ForeName>Emily</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>a Division of Biological Sciences , University of California , San Diego, La Jolla , CA , USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AG038664</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM114139</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Autophagy</MedlineTA>
<NlmUniqueID>101265188</NlmUniqueID>
<ISSNLinking>1554-8627</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051192">Receptors, Pattern Recognition</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001424" MajorTopicYN="N">Bacterial Infections</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017173" MajorTopicYN="Y">Caenorhabditis elegans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004331" MajorTopicYN="Y">Drosophila melanogaster</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="Y">Immunity, Innate</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023421" MajorTopicYN="Y">Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009181" MajorTopicYN="N">Mycoses</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051192" MajorTopicYN="N">Receptors, Pattern Recognition</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014777" MajorTopicYN="N">Virus Diseases</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">C. elegans</Keyword>
<Keyword MajorTopicYN="Y">D. melanogaster</Keyword>
<Keyword MajorTopicYN="Y">autophagy</Keyword>
<Keyword MajorTopicYN="Y">epithelial immunity</Keyword>
<Keyword MajorTopicYN="Y">extracellular pathogens</Keyword>
<Keyword MajorTopicYN="Y">infection</Keyword>
<Keyword MajorTopicYN="Y">innate immunity</Keyword>
<Keyword MajorTopicYN="Y">pattern recognition receptors</Keyword>
<Keyword MajorTopicYN="Y">xenophagy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pmc-release">
<Year>2019</Year>
<Month>02</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29130360</ArticleId>
<ArticleId IdType="doi">10.1080/15548627.2017.1389824</ArticleId>
<ArticleId IdType="pmc">PMC5902216</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2006 Jul;7(7):715-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16767093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Dec 12;12 (12 ):e1006093</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27942022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2016 Aug 28;428(17 ):3387-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27456933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2009 Apr 17;30(4):588-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19362021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Comp Immunol. 2014 Aug;45(2):214-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24674884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Dec;7(12):e1002453</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22216003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2017 Feb;13(2):371-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27875098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Apr 9;15(4):403-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24721569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Apr 01;6(4):e1000892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20369020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Jul 23;6(1):10-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19616762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2008 Dec 9;6(12):2736-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19071962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Med Sci. 2017 Mar;62(1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28126697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Mar;7(3):279-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21189453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>WormBook. 2013 Dec 26;:1-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24395814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2016 Dec 01;3(12 ):588-596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):715-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9892699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2017 Jul 12;22(1):74-85.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28669671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Microbiol. 2014;9(3):343-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24762308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Jun 19;40(6):896-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24882217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Exp Pathol. 2012 Jul 12;Suppl 4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23750326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Sep 8;357(6355):1047-1052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28751470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2010 Jan;10(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20029447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016;12 (1):1-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26799652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):E1638-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22645363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2008 Jun 12;3(6):352-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18541212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Jun 19;10 (6):e1004200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24945527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Apr 17;13(4):406-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23601103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2012 Jun 25;12(7):503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22728527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Jan 16;40(1):51-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24374193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Aug;26(8):624-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27050762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1821-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25624506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2008 Aug;9(8):908-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 May 24;15(8):1728-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27184844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2015 Feb;23:163-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25497773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2013;47:233-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2016 Oct 15;129(20):3721-3731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27562069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Innate Immun. 2013;5(5):444-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23689401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Cancer Res. 2016;130:1-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27037750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2016 Dec 05;3(12 ):579-581</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Jun 17;332(6036):1429-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21617040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Nov 13;456(7219):259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Dec 20;450(7173):1253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18097414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Jun 29;170(1):158-171.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28666117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Oct 5;25(19):R911-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2010 Jan;11(1):55-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19898471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12480-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25114220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2012 Apr 20;36(4):658-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22464169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2015 Feb;23:94-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25461579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2013 Jun 12;13(6):723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23768496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14564-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19667176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Sep 26;501(7468):512-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24005326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Gerontol. 2009 Mar;44(3):228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18955126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2016 Feb;38:1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26517153</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Kuo, Cheng Ju" sort="Kuo, Cheng Ju" uniqKey="Kuo C" first="Cheng-Ju" last="Kuo">Cheng-Ju Kuo</name>
</region>
<name sortKey="Hansen, Malene" sort="Hansen, Malene" uniqKey="Hansen M" first="Malene" last="Hansen">Malene Hansen</name>
<name sortKey="Troemel, Emily" sort="Troemel, Emily" uniqKey="Troemel E" first="Emily" last="Troemel">Emily Troemel</name>
</country>
<country name="Taïwan">
<noRegion>
<name sortKey="Kuo, Cheng Ju" sort="Kuo, Cheng Ju" uniqKey="Kuo C" first="Cheng-Ju" last="Kuo">Cheng-Ju Kuo</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000655 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000655 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29130360
   |texte=   Autophagy and innate immunity: Insights from invertebrate model organisms.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29130360" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020